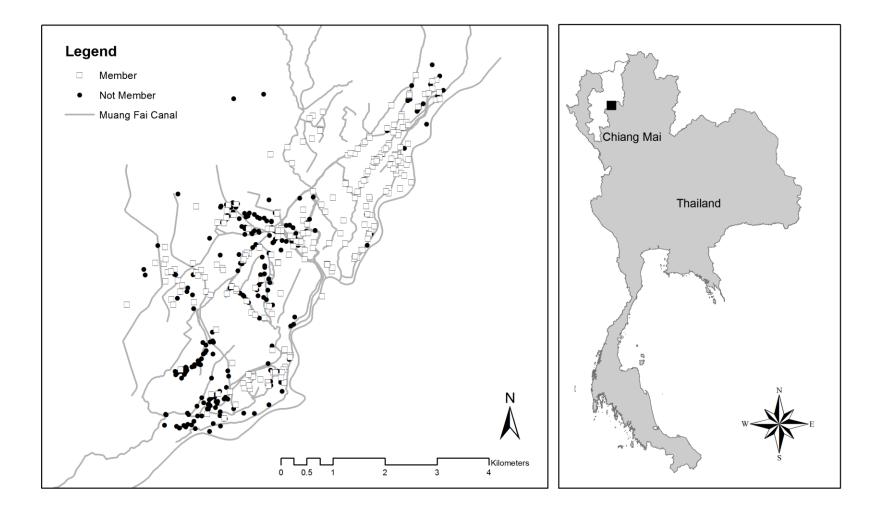
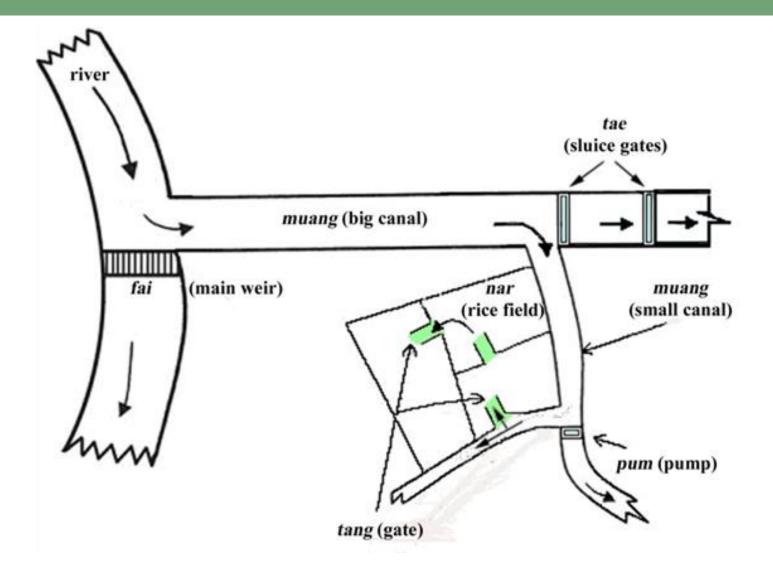
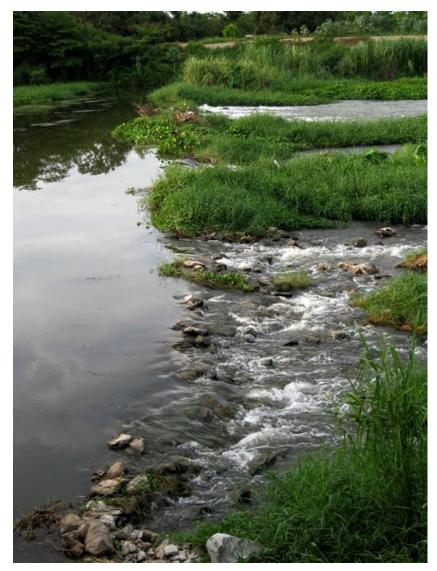
ESTIMATING THE ECONOMIC AND ENVIRONMENTAL BENEFIT OF A TRADITIONAL COMMUNAL WATER IRRIGATION SYSTEM: THE CASE OF *MUANG FAI* IN NORTHERN THAILAND

ARRIYA MUNGSUNTI KEVIN PARTON



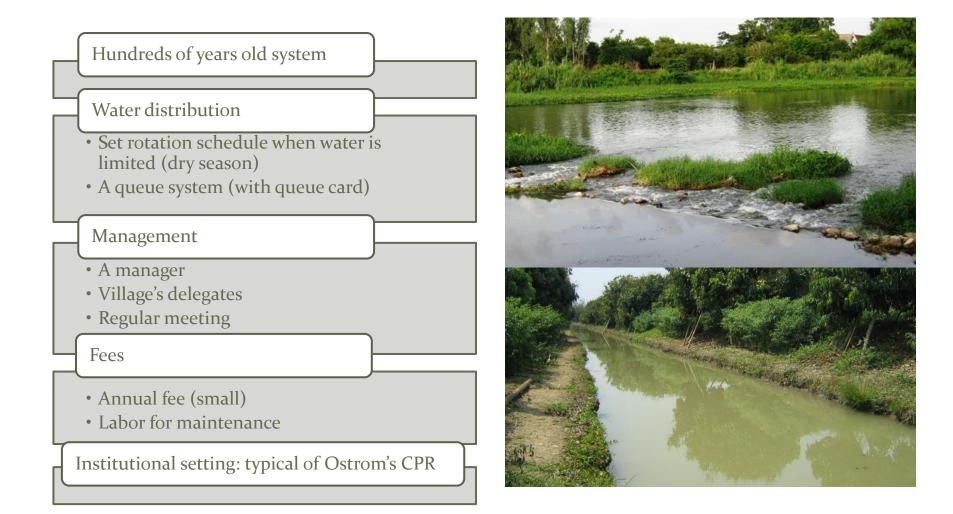
Institute for Land, Water and Society Charles Sturt University


Presentation Outline:


- ^{1.} Background
- 2. Objectives
- 3. Methodology
- 4. Results
 - Study Site
 - Determinants of Participation
 - Impact of Participation
- 5. Concluding Remarks

Study Area:

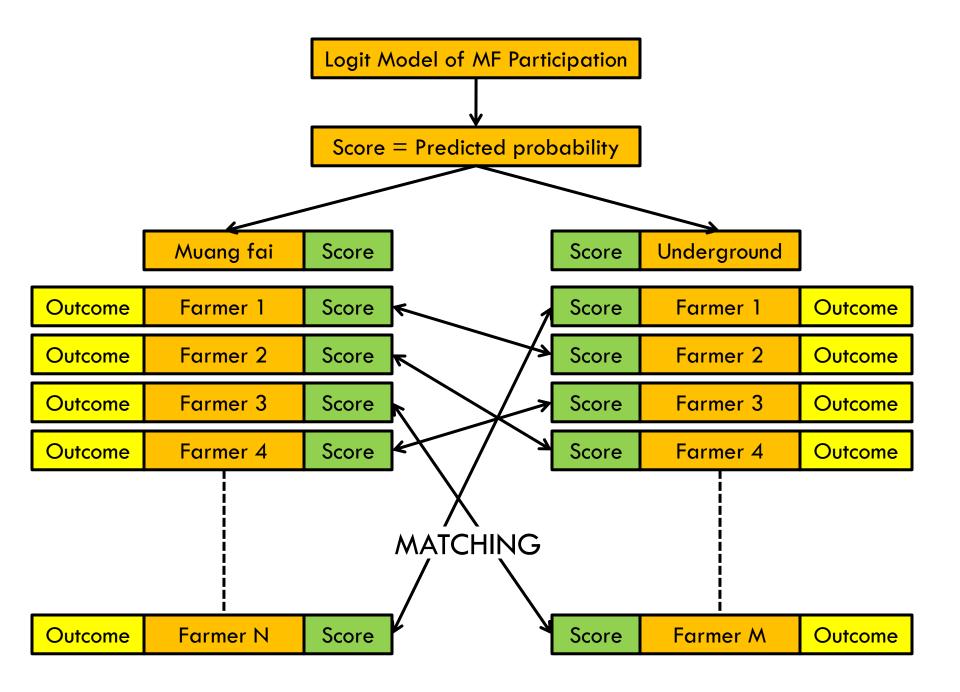
Muang fai Irrigation System

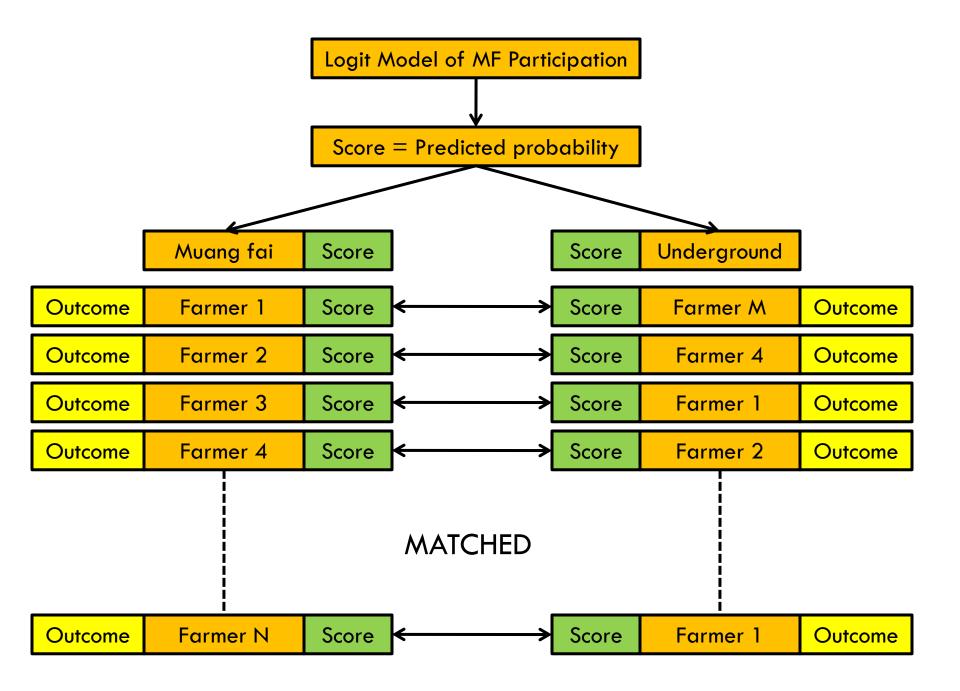


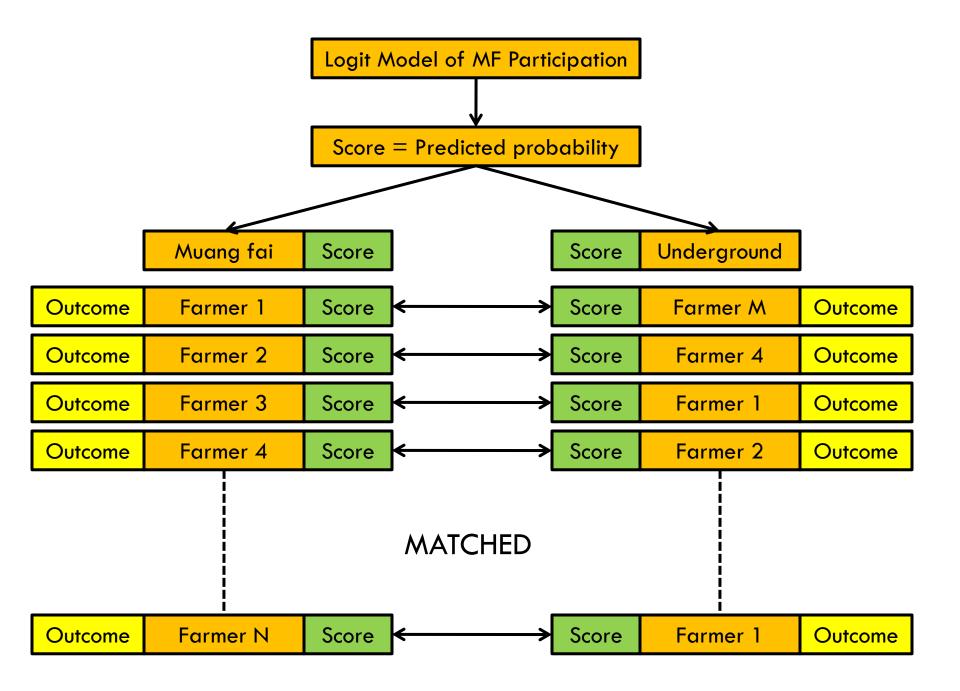
(A) <u>Headwork Area (rock-filled weir) of</u> <u>Muang fai Sop Rong irrigation system</u>

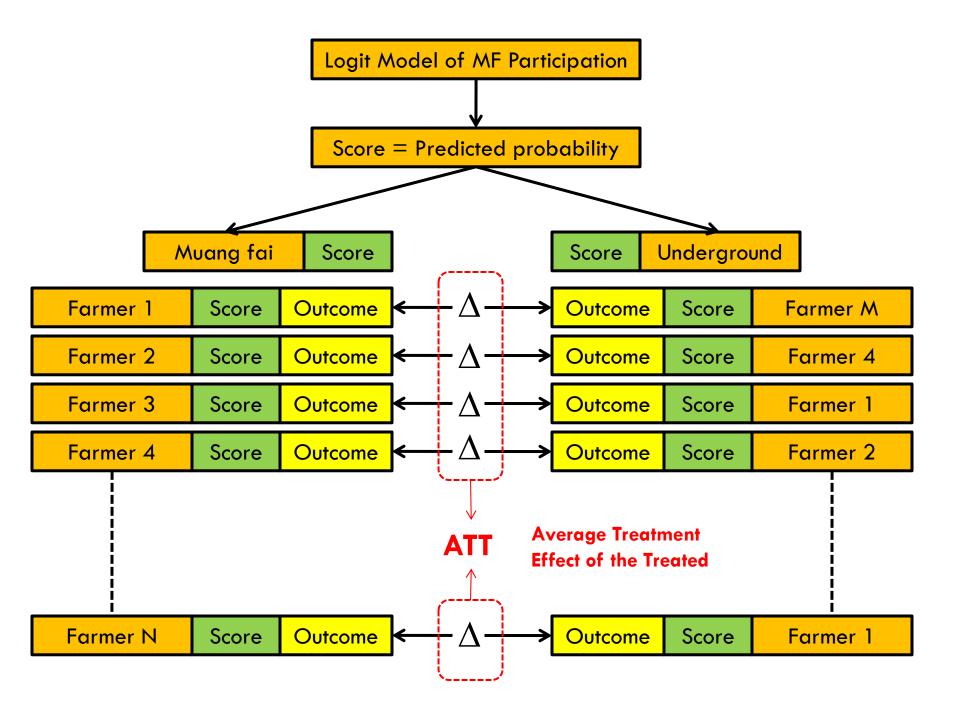
(B) <u>Small irrigation canal (or "*muang*") at</u> <u>Muang fai Sop Rong irrigation system</u>

Muang fai Sop Rong




Objectives

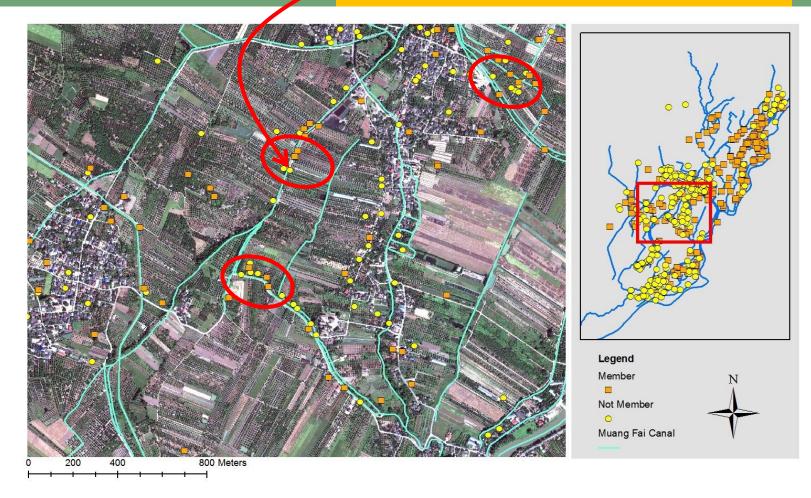

- ^{1.} To find out what is the benefit of participating in the *muang fai* irrigation system by estimating the productivity gain from adopting *muang fai* instead of non-irrigated or underground irrigation.
- ^{2.} To find out whether or not farmers who are members of *muang fai* irrigation system use water more efficiently than farmers with alternative sources of irrigation.


Method: Propensity Score Matching (PSM)

- PSM is used to estimate the difference in productivity and water use efficiency between MF member and non-MF member <u>attributed to MF participation only.</u>
- PSM correct the biased simple mean comparison by controlling for participation endogeneity.
- PSM calculate only the difference in productivity and water use efficiency between MF members and non-MF members who have similar characteristics i.e. similarity in the likelihood of participation (matching).

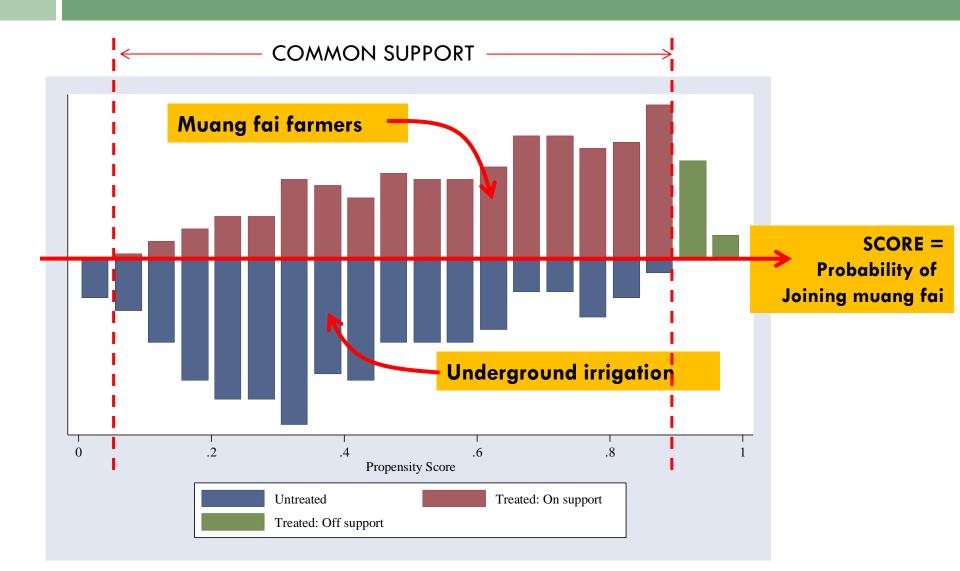
Method: Data Collection

- Survey Population:
 Longan farmers who are
 located within 12 villages
 that are engaged in muang
 fai Sop Rong region.
- Stratified Random
 Sampling of 481 farmers.
- FGD, Pre-test, and Actual
 Survey conducted for 6
 months (Feb July, 2011)



Study Area:

Distance to canal is not the sole determinants of *Muang fai* membership



Quality of the Logit model: Pre-requisite for PSM

Correct prediction diagnostics

	Actual						
Prediction	member (D)	not-member (~D)	Total				
<i>muangfai</i> member (+)	163	64	227				
not-member (-)	72	166	238				
Total	235	230	465				
Sensitivity	Pr(+ D)		69.36%				
Specificity	Pr(- ~D)		72.17%				
Positive predictive value	Pr(D +)		71.81%				
Negative predictive value	Pr(~D -)		69.75%				
False + rate for true ~D	Pr(+ ~D)		27.83%				
False - rate for true D	Pr(- D)		30.64%				
False + rate for classified +	Pr(~D +)		28.19%				
False - rate for classified -	Pr(D -)		30.25%				
Correctly classified			70.75%				
Goodness of fit test		Chi-squared(450)	P-value				
Pearson's goodness of fit test		455.12	0.4238				

PSM Validity – Common Support

PSM Results: Impact on Productivity

	Un- matched	Neighbor (1)	Neighbor (5)	Caliper (0.01)	Caliper (0.06)	Kernel	Radius	Ties
<u>Quantity - Kg per rai</u>					i			
Muang fai (treatment)	1070.2	1078.5	1078.5	1053.6	1078.5	1078.5	1078.5	1078.5
Underground (control)	972.2	952.6	892.6	985.2	952.6	929.2	972.2	952.6
Difference (ATT)	98	125.87	185.85	68.36	125.87	149.26	106.23	125.87
s.e.	(94.38)	(183.75)	(147.77)	(194.95)	(190.48)	(134.82)	(99.62)	(180.03)
Difference (%)	10.1	13.2	20.8	6.9	13.2	16.1	10.9	13.2
<u>Sales - Baht per rai</u>								
Muang fai (treatment)	20650.6	21039.8	21039.8	20688.4	21039.8	21039.8	21039.8	21039.8
Underground (control)	15682.9	15617.5	14640.2	15966.9	15617.5	14959.1	15682.9	15617.5
Difference (ATT)	4967.7	5422.27	6399.55	4721.48	5422.27	6080.65	5356.89	5422.27
s.e.	(1,384.65)***	* (2,110.95)**	(1,809.77)***	(2,152.09)**	(2,124.78)**	(1,705.36)***	(1,478.99)***	(2,091.16)**
Difference (%)	31.7	34.7	43.7	29.6	34.7	40.6	34.2	34.7

Note: numbers in parantheses are standard errors from bootstrapping with 1,000 replications. ***) significant at 1%; **) Significant at 5%; *) Significant at 10%, ATT = Average Treatment effect on the Treated

Results: Impact on Water Conservation

	Un- matched	Neighbor (1)	Neighbor (5)	Caliper (0.01)	Caliper (0.06)	Kernel	Radius	Ties
Cubic meter per rai								
Muang fai (treatment)	883.8	887.7	887.7	898.5	887.7	887.7	887.7	887.7
Underground (control)	1727	1789.4	1560.6	1754.5	1789.4	1592.3	1727	1789.4
Difference (ATT)	-843.2	-901.73	-672.95	-855.98	-901.73	-704.57	-839.3	-901.73
s.e.	(145.11)***	(233.54)***	(179.09)***	(249.75)***	(225.16)***	(151.10)***	(146.36)***	(246.62)***
Difference (%)	-48.8	-50.4	-43.1	-48.8	-50.4	-44.2	-48.6	-50.4
Cubic meter per kg sold								
Muang fai (treatment)	1.932	1.962	1.962	2.065	1.962	1.962	1.962	1.962
Underground (control)	3.805	3.406	3.627	3.396	3.406	3.502	3.805	3.406
Difference (ATT)	-1.873	-1.44	-1.66	-1.33	-1.44	-1.54	-1.84	-1.44
s.e.	(0.53)***	(0.85)*	(0.70)**	-0.96	(0.86)*	(0.56)***	(0.56)***	(0.86)*
Difference (%)	-49.2	-42.3	-45.8	-39.2	-42.3	-44	-48.4	-42.3

Note: numbers in parantheses are standard errors from "Bootstrapping" with 1,000 replications.

***) significant at 1%; **) Significant at 5%; *) Significant at 10%, ATT = Average Treatment effect on the Treated

Cross-Validation: Water Quality Testing

	Non-Muang Fai		
	(Underground)	Muang Fai	Ratio
рН	6.95	7.4	0.94
Electrical Conductivity (EC)			
(muS/cm)	547.7	250.6	2.19
Nitrate (mg/L)	4.94	6.33	0.78
Phosphate (mg/L)	0.56	0.35	1.63
Sodium (mg/L)	46.77	10.79	4.33
SAR	1.66	0.62	2.67
Iron (mg/L)	6.42	0.71	9
Manganese (mg/L)	1.12	0.32	3.48
Boron (mg/L)	0.15	0.14	1.13

"<u>Iron</u> coating can be deposited in leaves affecting photosynthesis, and also in fruits affecting the quality, which in turns determine the sales value of the fruits."

"The adverse effects of the high <u>salinity</u> of irrigation water on the crops can be minimized by irrigating them frequently. More frequent irrigations maintain higher soil water contents in the upper parts of the root zone while reducing the concentration of soluble salts." -- FAO (1994)

Concluding Remarks:

□ The *muang fai* is a traditional irrigation management that has been practiced for generations.

However, research on the value of this system from environmental economics perspective is lacking.

Muang fai participation is determined by various factors not only physical accessibility such as distance to the canal.

Other factors include farm size, economic status, and social influences.

- □ *Muang fai* is found to have both economic and conservation value.
 - It increases farm productivity and farmer's livelihood (at least 30% improvement)
 - It use water a lot more efficiently (around 40% more efficient)
- As MF is characterized by common property management, under which a set of pre-established rules are used to distribute water among members, this study demonstrate how the traditional value in resource management still has relevance in this modern society.

THANK YOU

COMMENTS ARE WELCOME!

Institute for Land, Water and Society Charles Sturt University